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Abstract— In this study, we tackle the complex task of
enabling prosthetic hands to accurately reproduce sounds, a
crucial aspect for distinguishing between different materials
through auditory feedback. Sound identification, such as dis-
cerning a drywall tap from that on a brick wall, significantly
enhances the functionality and user experience of prosthetic
devices. However, achieving this level of auditory feedback in
prosthetic hands poses considerable challenges. We utilize re-
inforcement learning (RL) techniques to train prosthetic hands
in emulating human-like sound characteristics, focusing on key
auditory signals like amplitude and onset timing. Our approach
integrates a detailed analysis of these sound attributes to direct
the prosthetic hand’s movements for the sound generation that
mimics natural human actions. We developed a tailored reward
function incorporating amplitude, onset strength, and timing
criteria to ensure the prosthetic hand’s movements align closely
with the intended human-like sound output.

I. INTRODUCTION

When inferring properties and characteristics about the
object, non-visual cues often play a crucial role. For example,
when we want to nail something heavy to the wall, we often
determine the suitability of the wall material by tapping it
with our fingers to listen to the resulting sound. A hollow
sound might indicate drywall, while a denser, higher-pitched
tone suggests plaster or brick. This seemingly simple act
becomes surprisingly challenging for individuals using pros-
thetic hands. The absence of auditory feedback in prosthetic
hands can limit the user’s ability to interact with and under-
stand their environment effectively. By incorporating realistic
sound generation, prosthetic hands can provide users with
valuable information about the objects they are touching,
enhancing their overall experience and functionality.

While much of the research on prosthetic hands has
focused on visual and tactile feedback [1]–[6], the use of
electromyography (EMG) in controlling prosthetic hands has
significantly improved responsiveness to muscle movements
[7]–[9]. These approaches enable prosthetic hands to perform
tasks effectively, such as creating finger gestures or grasping
objects. However, these methodologies, despite their strong
foundation, lack the crucial ability to generate sounds during
object interaction, limiting performance in certain tasks. For
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Fig. 1: RL framework overview. A. Listening to human-
produced sound and extracting sound features such as am-
plitude and onset. B. Interaction with the object and sound
generation according to the action of the prosthetic hand.
C. Calculate the reward, including amplitude, onset, timing,
and hit reward from the extracted sound information and
recorded interactive sound.

instance, in situations where visual feedback is limited, such
as in low-light conditions or when handling objects outside
the user’s field of view, auditory cues become increasingly
important. By providing information about the material prop-
erties and the hand’s interaction with the object, sound
feedback can help users maintain a sense of control and
awareness even when visual information is unavailable.

This paper explores methods for effective sound genera-
tion in prosthetic hands, aiming to bridge this gap and unlock
their full potential. We focus on the problem of generating
tapping sounds using a prosthetic hand that mimics human-
produced sound. The tapping sound generation function
can be integrated into the prosthetic hand control system,
allowing users to activate it when needed, such as when
exploring surface properties or interacting with objects in
low-light conditions. Moreover, while prosthetic hand users
can employ wrist or lower arm tapping to generate sounds,
finger tapping offers a more natural and intuitive method for
exploring surface properties, as it closely mimics the actions
of a human hand. To this end, we utilize reinforcement
learning (RL) to create effective tapping motions of the
prosthetic hand that can generate realistic sounds. RL stands
out for its ability to optimize decision-making processes in
complex environments. This characteristic has enabled it to
be applied extensively in fields like music and interactive
audio applications [10]–[12].



Fig. 2: The hardware setup includes PSYONIC Ability Hand,
mounted on a 6-DOF PAPRAS robot arm. Sound recording
is performed using a ZOOM H6 recorder. An 8-inch Eastar
Drum Practice Pad is utilized as the tapping object.

Our system consists of three main steps. First, it records
the human-produced sound and extracts features such as
amplitude and onset. These features of the reference sound
are used to calculate the reward. Second, the prosthetic hand
moves its fingers based on the current policy and generates
sound through interaction with the object. Third, the reward
is calculated by inputting the reference sound and generated
sound features, and the policy is updated. It is important to
design a correct reward function in reinforcement learning.
We design a reward function with four elements: amplitude,
onset strength, onset timing, and hit so that the prosthetic
hand can produce realistic sounds. Fig. 1 illustrates our
system’s framework.

Our contribution to this work can be summarized as
follows:

• We formulate the task of effectively generating de-
sired sounds through prosthetic control as reinforcement
learning.

• We design a reward function to evaluate whether the
sound is appropriately generated.

We would like to note that while we only focus on generating
rather simple tapping sounds, this work is a preliminary
study towards generating diverse interactive sounds using
prosthetic hands. To the best of our knowledge, this is the
first work to use reinforcement learning to train a policy for
the prosthetic hands to make a sound that resembles the given
ground truth sound.

II. PROPOSED METHOD

In this section, we present our method to generate tapping
sounds, including single and double-beat sounds, by learning
the motion of a prosthetic hand interacting with a drum
pad, leveraging reinforcement learning (RL). Traditional RL
approaches often rely on simulation environments due to
their low sample efficiency. However, implementing a hand-
drum pad interaction simulation to achieve realistic sound
is extremely difficult because it involves multiple contact
dynamics with high frequencies, resulting in a significant

sim-to-real gap. To overcome this limitation, we propose a
real-world learning approach. We train a policy by directly
controlling the prosthetic hand and generating sound in a real
environment using a high-fidelity audio recorder.

A. Formulation
We leverage a Markov decision process (MDP) frame-

work [13] to model the sound generation process. This allows
the prosthetic hand to learn and optimize its actions based
on observations and rewards, progressively refining the sound
quality. At each time step, t, the hand receives observations,
ot ∈ R6, which consist of joint angle position, velocity,
acceleration, and mean amplitude of sounds. Based on these
observations, it selects an action, at ∈R, that adjusts its joint
angle. The reward, rt , is determined by four factors: the
difference in mean amplitude from the reference sound, the
similarity of sound onset sequences, the accuracy of sound
onset timing, and the number of distinct sound events.

1) Observations: Our system generates tapping sounds
using only the index finger among the fingers of a prosthetic
hand. To guide the finger’s movement, the system utilizes
observations, consisting of the index finger’s joint angle
position at the current time step, qt , joint angle position at the
previous time step, qt−1, joint angle velocity at the current
time step, q̇t , joint angle velocity at the previous time step,
q̇t−1, joint angle acceleration, q̈t , and the mean amplitude of
generated sound, m̃t .

ot = {qt−1,qt , q̇t−1, q̇t , q̈t , m̃t}

The joint angle position, qt ∈ R, is limited to the range
of [0.087, 1.047] radians (rad). q̇t ∈ R stands for joint
angle velocity in radians per second (rad/s), and q̈t ∈ R
denotes joint angle acceleration in radians per second squared
(rad/s2). q̇t and q̇t−1 are numerically calculated from qt .
mt ∈ R is the mean amplitude of sound, typically measured
in decibels (dB). This comprehensive set of observations,
which includes both current and previous step values, forms
the basis for our system’s control and understanding of the
tapping process.

2) Action: Given observations, the prosthetic hand learns
a parameterized policy, π , to generate specific joint angle
movements as actions. The policy, π , is a function that maps
from observations to action, a target joint angle of an index
finger. The action is bound within the limits of the prosthetic
hand’s joint, at ∈ [0.087,1.047].

3) Reward Structure: We aim to train the prosthetic hand
to generate sounds closely matching a given reference audio.
To achieve this, the agent receives a composite reward based
on four critical aspects of the generated sound.

Amplitude Reward: The amplitude reward is based on
the difference between the mean amplitude of the audio
produced by the robot and a reference audio amplitude. The
smaller the gap between the two amplitudes, the higher the
reward. The amplitude reward is calculated as follows:

ramp
t = e−|m̃t−mt |, 0 ≤ t ≤ T (1)

where m̃t is the mean amplitude of the generated audio at
time t, and mt is the mean amplitude of the reference audio



at time t. The exponential function accentuates the reward
as the difference between the two amplitudes decreases,
aligning the robot’s audio output with the reference audio’s
amplitude. The amplitude reward encourages the robot to
generate audio with a similar amplitude to the reference
audio to have an overall sound quality similar to the reference
audio.

Onset Strength Reward: The onset strength reward ronset
t

is derived from a dynamic time warping (DTW) [14] com-
parison between the onset strength sequence of the produced
audio and the reference audio. The onset strength sequence
captures the beats and strength of sounds. The closer the two
sequences match, the higher the reward. The onset strength
reward is as follows:

ronset
t =

{
−DTW (s̃0:T ,s0:T ) if t = T
0 otherwise

(2)

where s̃0:T is the onset strength sequence of the produced
audio, and s0:T is the onset strength sequence of the reference
audio. DTW (·, ·) is the normalized DTW distance between
two sequences. The onset strength reward encourages the
agent to generate sounds with attacks, as measured by the
energy.

Onset Timing Reward: The onset timing reward rtiming
t

is a measure of how accurately the agent matches the onset
timing of the reference audio. The onset timing is the time
at which the sound’s energy suddenly increases, marking
its beginning. While onset timing might seem like just a
parameter for aligning signals in time, it plays a crucial
role in maintaining a consistent rhythm in tapping. In real-
world tapping, keeping a steady rhythm is important, and
the relative time intervals between taps matter. The onset
timing reward encourages the agent to learn this consistent
rhythm and maintain the relative time intervals between taps.
If the onset timings of the generated and reference audio are
mismatched, it can lead to a perceived delay or unnatural
rhythm in the generated tapping sound, which can degrade
the quality and realism of the audio. Therefore, the closer
the onset timings of the generated and reference audios, the
higher the reward. The onset timing reward is as follows:

rtiming
t =

{
e−|t̃onset−tonset| if t = T
0 otherwise

(3)

where t̃onset is the onset timing of the generated audio,
and tonset is the onset timing of the reference audio. The
exponential function is used to accentuate the reward as the
difference between the two onset timings decreases. This
helps to ensure that the agent learns to generate sounds with
onset timings that closely match the reference audio.

Hit Reward: The hit reward rhit
t is a measure of whether

the agent successfully strikes the drum pad. The hit reward
is awarded when the maximum amplitude of the generated
audio exceeds a specific threshold and when the number
of beats detected in the generated audio corresponds to the
number of beats in the reference audio. While a single tap
may be sufficient in certain situations, learning to generate
various tapping patterns, including multiple taps, is crucial

for creating natural and realistic tapping sounds. Generating
the correct number of taps is essential for maintaining the
rhythmic pattern and natural feel of the tapping sound. If the
agent generates too few or too many taps compared to the
reference audio, it can result in an unnatural or inconsistent
tapping pattern, which can degrade the realism and quality
of the generated audio. By including the number of beats
in the reward function, we ensure that the agent learns to
generate the appropriate number of taps, whether it’s a single
tap or multiple taps, depending on the reference audio. The
hit reward is as follows:

rhit
t =

{
1 if t = T and h̃ = h and ât ≥ ε

0 otherwise
(4)

where h̃ is the number of beats detected in the generated
audio. h̃, h is the number of beats in the generated and
reference audio. ât is the maximum amplitude of the gener-
ated audio at time t, and ε is the amplitude threshold. The
hit reward is important for ensuring that the agent learns
to generate loud sounds to strike the drum pad. It is also
important to ensure that the agent learns to generate sounds
with the correct number of beats.

Algorithm 1 Tapping Motion Generation

1: Initialize policy parameters θ , initial observations o0
2: Load reference sound
3: for t = 0 to T do
4: Generate action at from policy πθ (ot)
5: Execute action at on prosthetic hand
6: Record generated sound for predefined duration
7: Calculate rewards based on sound (Equation. 1-5)
8: Observe new observations ot+1
9: Store transition (ot ,at ,rt ,ot+1) in replay buffer

10: if enough data in buffer then
11: Calculate advantage estimate using GAE
12: for k = 1 to number of epochs do
13: Sample mini-batch from replay buffer
14: Update πθ using PPO clipped objective
15: end for
16: end if
17: end for
18: Return trained policy parameters θ

Total Reward: The total reward rt is a weighted sum of
the four individual reward components:

rt = waramp
t +wosronset

t +wotr
timing
t +whrhit

t (5)

where wa, wos, wot , and wh are the weights for each reward
component. The weights can be used to control the relative
importance of each reward component. For example, if
the agent has difficulty generating sounds with the correct
number of beats, the weight for the hit reward can be
increased. The total reward updates the agent’s policy in the
reinforcement learning algorithm.



B. Tapping Motion Generation
1) Architecture: We adopt the Proximal Policy Optimiza-

tion (PPO) [15] reinforcement learning algorithm to train the
prosthetic hand to generate sounds that closely match a given
reference audio. PPO is a policy gradient algorithm that has
been shown to be effective for a variety of tasks, including
robotics. Our implementation of PPO uses an Actor-Critic
architecture, which consists of two neural networks: an
actor network and a critic network. The actor network is
responsible for determining the action to take in a given state,
while the critic network estimates the value of a state-action
pair. Algorithm 1 represents our PPO-based sound generation
procedure.

TABLE I: Training Settings

Parameter Value
Random Seed 111
Optimizer Adam
Learning Rate 3×10−4

Number of Hidden Layers 2
Neurons per Hidden Layer 128
Action Velocity Boundaries -8.0 to 8.0 rad/s
Joint Position Boundaries 0.087 to 1.047 radians
Audio Sampling Rate 44.1 kHz
Clipping Ratio 0.2
Discount Factor (γ) 0.99
GAE Parameter (λ ) 0.95
Value Coefficient 0.5
Entropy Coefficient 0.01
Maximum Gradient 0.5

2) Training Settings: We initialized our experiments with
a random seed set to 111 to ensure optimal and repro-
ducible results. Our training environment is built around the
Proximal Policy Optimization (PPO) framework, driven by
the Adam optimizer with a learning rate of 3× 10−4. We
utilize feedforward neural networks as our actor and critic,
characterized by two hidden layers, each consisting of 128
sizes. To guarantee safety and effectiveness in operations, we
have defined the action velocity boundaries as a minimum
of -8.0 and a maximum of 8.0 rad/s. This ensures that the
prosthetic hand does not move too quickly or forcefully,
which could lead to injury or damage. Correspondingly, the
joint positions are bound between a minimum of 0.087 and
a maximum of 1.047 radians, ensuring the feasibility and
safety of movements. Understanding the intricacies of the
audio environment, we sample our audio at a sample rate
of 44.1kHz. This allows us to capture minute details and
nuances from the agent’s interactions, which is important for
generating realistic and expressive sounds. Critical to PPO,
our policy update is guided by a clipping ratio of 0.2. This
ensures that the policy updates are not too large, which can
lead to instability. The discount factor and GAE parameter
are set to γ of 0.99 and λ of 0.95, respectively. These
parameters control the importance of future rewards and the
weighting of advantages, which are important for training
the policy to generate long-term rewards. Regularization is

Fig. 3: The learning curve of a prosthetic hand to make
tapping sounds, single-beat and double-beats. The blue line
is the smoothed reward, and the light blue area indicates the
variance.

addressed by setting a value and entropy coefficients to 0.5
and 0.01, respectively. This helps to prevent overfitting and
encourage exploration. The maximum gradient is bounded at
0.5, ensuring stability in our optimization steps. Our training
settings are summarized in TABLE I.

III. EXPERIMENTS

In this section, we demonstrate the training of a prosthetic
hand using a reward function defined by sound information
and evaluate its ability to produce sounds similar to a
reference sound. Emulating the interaction sounds between
the hand and a drum pad is challenging, leading to a
significant gap between simulation and reality. Therefore, we
have implemented our system in a real-world environment
rather than a simulated one. These experiments confirm that
the prosthetic arm can produce a sound that matches the
reference sound within the reinforcement learning system.

A. Experimental Setup
We used PSYONIC Ability Hand, a prosthetic hand with

six degrees of freedom [16]. The hand was mounted on a 6-
DOF PAPRAS robot arm [17], and one finger was controlled
while the arm was held in a fixed pose. The sound was
recorded using a ZOOM H6 recorder for 1-second inter-
vals. Only mono sound information was used, despite the
device’s stereo capabilities. An 8-inch Eastar drum practice
pad served as the tapping object, struck directly by the
Ability hand to produce sound. The prosthetic hand performs



(a) Single-beat

(b) Double-beat

Fig. 4: The waveforms of the reference sound and the
generated sound for both single beats (a) and double beats
(b).

a tapping motion while the position of its wrist and the
height of the drum pad are fixed and generate sound. Fig.2
represents our experimental hardware setup.

B. Experimental Results

Fig. 3 illustrates the learning curve of our prosthetic hand
in generating tapping sounds, both single and double beats.
We find that the agent achieves reasonable results after
training 3000 episodes. Training an agent with a reward
defined only by sound information is challenging. For exam-
ple, motor noise, sudden external noise, and audio recorder
operation error can cause the agent to receive low rewards
even if it takes the correct action. To address this, our reward
function reflects a variety of sound characteristics, not just a
single characteristic, such as amplitude, onset strength, and
timing. As a result, we observed that as the defined sound
reward increased, the sound generated by the robot clearly
became more similar to the shape of the reference sound,
even in situations with external noise. This demonstrates the
effectiveness of our reward function in guiding the agent
towards accurate sound generation for prosthetic hands.

Fig. 4 presents the waveforms of the generated sound
and the reference sound for both single beats (4a) and
double beats (4b). While the generated sound exhibits some
level of motor noise not present in the reference, the two
waveforms are remarkably well aligned along the time axis.
Notably, peak and low point demonstrate close resemblance,

(a) Single-beat

(b) Double-beat

Fig. 5: The onset strength and timing for both the reference
sound and the generated sound in single beats (a) and double
beats (b)

suggesting the generated sound shares similar frequency and
amplitude characteristics with the reference.

Finally, we calculated onset strength and timing from
the noise-filtered sound and evaluated the similarity. Fig. 5
represents plots of the onset strength and timing for both
the reference and the generated sounds. Fig. 5a is results
corresponding to a single-beat, where one can observe that
the shape and timing of the onset strength plot from the robot
hand’s sound resemble the reference. Fig. 5b presents results
for a double-beat, illustrating that the timing difference
between the two beats also closely aligns with the timing
difference in the reference. Fig. 6 represents the snapshot of
a prosthetic hand movements for sound generation.

IV. DISCUSSION

In this study, we utilize actual prosthetic hand hardware
(PSYONIC Ability Hand) and an audio recorder to gener-
ate interaction sounds with a drum pad. This method can
improve the realism of the prosthetic hand by incorporating
auditory information other than visual and tactile into the
prosthetic hand, providing an effect similar to that of a human
hand. By more closely replicating the actions of a natural
hand, this development can boost the confidence and comfort
of users, facilitating smoother interactions in their daily lives.
For instance, when users attempt to tap on different surfaces
to distinguish materials, the generated tapping sounds can
provide valuable auditory cues, enhancing their understand-
ing of the environment and objects they interact with.



(a) Single-beat tapping motion

(b) Double-beat tapping motion

Fig. 6: Snapshot of prosthetic hand movements for sound generation. (a) The movement of the trained prosthetic hand when
given a single beat sound of one-second duration, (b) The movement of the trained prosthetic hand when given a double
beat sound of one-second duration.

The proposed methodology has the potential to impact
the field of prosthetic hand research by introducing a novel
sensory feedback modality. By demonstrating the feasibility
of generating realistic sounds using reinforcement learning,
this study opens up new avenues for enhancing the user
experience and functionality of prosthetic devices. Compared
to alternative methods, such as recording real finger motion
and programming the prosthetic controller, our reinforcement
learning approach offers several advantages. First, it allows
for greater adaptability and flexibility, as the prosthetic hand
can learn to generate appropriate sounds for a variety of
surfaces and objects. Second, the learned policy can be fine-
tuned and optimized over time, enabling the prosthetic hand
to improve its performance based on user feedback and
experience. Finally, our approach has the potential to be
extended to other types of sounds and interactions beyond
the tapping task described in this study, making it a versatile
tool for enhancing the functionality of prosthetic devices.

Moreover, the technology presents the potential for in-
creased sensory feedback. By producing sound correspond-
ing to different movements, users can gain better spatial and
situational awareness of their prosthetic limb. This could be
particularly beneficial in scenarios where visual feedback
is limited. For example, in low-light conditions or when
handling objects outside the user’s field of view, the auditory
feedback can provide crucial information about the prosthetic
hand’s interactions with the environment.

However, it is important to acknowledge certain limita-
tions encountered during the experiment. Creating a com-
pletely soundproof environment in real-world settings proved
challenging. Ambient noise and actuator sounds from the
prosthetic hand disrupted the recording of tapping sounds,

impacting the reward mechanism as the prosthetic hand,
despite performing correctly, often received unsatisfactory
rewards. Furthermore, occasional malfunctions in the audio
recording equipment led to sound recording errors, affecting
the accuracy of reward calculations. To address these limi-
tations, future studies could explore the use of soundproof
booths or noise filtering technologies for the actuators to
capture more accurate sound states and improve the learning
process.

Based on the results of this study, we aim to expand
beyond tapping sounds and explore training policies for pros-
thetic hands that use multiple fingers or tools like drumsticks
to create sounds. This could lead to the development of
more advanced and versatile prosthetic devices capable of
producing a wide range of realistic sounds, further enhancing
the user experience and functionality. Additionally, the pro-
posed approach could be extended to other domains, such as
robotic musicianship or industrial applications, where precise
auditory feedback is crucial.
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