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Abstract— Recent advances in text-to-motion generation en-
able realistic human-like motions directly from natural lan-
guage. However, translating these motions into physically exe-
cutable motions for humanoid robots remains challenging due
to significant embodiment differences and physical constraints.
Existing methods primarily rely on reinforcement learning
(RL) without addressing initial kinematic infeasibility. This
often leads to unstable robot behaviors. We introduce Contact-
aware motion Refinement (CoRe), a fully automated pipeline
consisting of human motion generation from text, robot-specific
retargeting, optimization-based motion refinement, and a sub-
sequent RL phase enhanced by contact-aware rewards. This
integrated approach mitigates common motion artifacts such as
foot sliding, unnatural floating, and excessive joint accelerations
prior to RL training, thereby improving overall motion stability
and physical plausibility. We validate our pipeline across diverse
humanoid platforms without task-specific tuning or dynamic-
level optimization. Results demonstrate effective sim-to-real
transferability in various scenarios, from simple upper-body
gestures to complex whole-body locomotion tasks.

I. INTRODUCTION

Designing expressive and executable motions for hu-
manoid robots remains a labor-intensive process, typically
relying on handcrafted trajectories, rule-based planners, or
task-specific controllers. These approaches are difficult to
scale or generalize across robots with different kinematics,
environments, and tasks. As humanoid robots are increas-
ingly deployed in interactive, human-centered settings, there
is a growing need for automated and scalable methods that
can translate high-level inputs into executable motions along
with corresponding control strategies.

Recent advances in text-to-motion generation [1], [2]
have demonstrated that diverse and semantically meaningful
human motions can be synthesized from natural language
using diffusion or transformer based generative models.
While promising, these models are trained on human motion
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A. Text description: “Execute boxing combinations: jab, cross, and duck "

B. Text description: “Walk forward at a steady pace.”
A
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Fig. 1: Real robot deployment. G1 executing motions from
text descriptions: (A) Boxing sequence, (B) Walking forward.

distributions and do not account for the kinematic or dynamic
constraints of physical robots. As a result, directly applying
text-generated human motions to real-world robots often
leads to joint limit violations or damaging behaviors during
execution [3].

To address this challenge, we propose Contact-aware mo-
tion Refinement (CoRe), a fully automated pipeline that gen-
erates robot-executable motions from free-form text inputs.
As illustrated in Fig. 1, our system allows real humanoid
robots to perform both dynamic whole-body motion and
locomotion from natural language commands. Our method
begins by generating a human motion from natural language
using a pre-trained generative model. The resulting motion is
then retargeted to the target robot and refined kinematically
to ensure stable and executable motion for the robot. This
step ensures that the motion conforms to the robot’s specific
kinematic structure and exhibits stable foot-ground contact
behavior. Finally, a physics-based reinforcement learning
phase trains a low-level policy to imitate the refined motion
in simulation, using both motion imitation and contact-aware
rewards to ensure robustness and sim-to-real transferability.

A key feature of CoRe is the integration of kinematic
refinement into the motion generation process. Unlike prior
approaches [4]-[7] that rely solely on reinforcement learning
to resolve physical constraints, CoRe performs a preemptive
correction of motion artifacts—such as foot sliding, unnatural
floating, or excessively high joint accelerations—that often
arise when adapting human motions to robots. Furthermore,
we incorporate the outcomes of kinematic refinement into the
reward function of the imitation learning phase, allowing the
policy to benefit from both geometric and dynamic feedback



within a unified training framework.
Fig. 2 presents an overview of our proposed pipeline. Our
contributions are summarized as follows:

1) We introduce CoRe, a contact-aware, kinematics-based
motion refinement strategy that enhances the feasibility
and deployability of retargeted motions without requir-
ing dynamic-level optimization.

2) We propose a contact-guided reinforcement learning
framework for motion imitation, enabling robust and
stable policy execution in both simulation and on real
hardware.

3) We validate our method across diverse robot embod-
iments and motion types—including whole-body lo-
comotion and upper-body gestures—demonstrating its
effectiveness and generality in real-world deployments.

II. RELATED WORK
A. Robot Motion Retargeting

Robot motion retargeting adapts human motion to robots,
managing morphological and kinematic discrepancies. Early
foundational methods by Pollard et al. [8] provided initial
frameworks for transferring motions between humans and
robots. Choi and Kim [9] developed a structured pipeline
for intuitive robotic motion generation, and subsequent data-
driven methodologies such as the nonparametric approach
by Choi et al. [10] and Self-Supervised Shared Latent
Embedding (S3LE) [11] prioritized scalability and collision-
free motion synthesis across various robot platforms. Jeong
et al. [12] proposed a robust pipeline integrating a unified
kinematic rig and trajectory refinement to handle diverse
motion data.

B. Physics-based Motion Imitation

Peng et al. [13] introduced a reinforcement learning (RL)
framework to train physically simulated agents in motion
imitation tasks. Further advancements by Peng et al. [14] im-
proved motion realism and stylistic diversity. Recent develop-
ments have emphasized continuous imitation and robustness,
such as the perpetual motion controller by Luo et al. [15].
Hybrid methods combining simplified trajectory optimization
with RL have shown further potential, as exemplified by
Fuchioka et al. [16]. Ji et al. [6] proposed ExBody2, en-
hancing motion realism through a generalist-specialist policy
structure but lacking seamless transitions between multiple
specialized tasks. OmniH20 by He et al. [17] presented a
whole-body humanoid teleoperation and autonomous control
system that supports dexterous loco-manipulation but relies
heavily on extensive sensor inputs and real-time teleoperation
data. Additionally, He et al. [7] developed HOVER, a ver-
satile neural controller consolidating diverse control modes,
but its approach does not explicitly perform kinematic pre-
refinement of generated motions, potentially limiting physi-
cal feasibility.

C. Text-based Robot Motion Generation

Recent works have explored the integration of large lan-
guage models (LLMs) and vision-language models (VLMs)

for robot motion generation from natural language descrip-
tions. Kumar et al. [4] presented a method for iteratively
refining robot control policies via natural language com-
mands, enabling diverse humanoid robot behaviors without
complex reward engineering; however, it lacks preemptive
kinematic refinements to avoid joint violations and unstable
behaviors. Similarly, Xu et al. [5] and LangWBC by Shao
et al. [18] rely solely on RL methods without explicitly
addressing initial kinematic infeasibility. RobotMDM by
Serifi et al. [19] employed diffusion-based generative models
fine-tuned with RL-based reward surrogates for plausible
robot motions but required training separate models for each
robot type, limiting scalability. Jiang et al. [20] introduced
HARMON, utilizing human motion priors and VLMs to
produce semantically meaningful motions validated through
simulations and experiments, yet similarly does not integrate
explicit kinematic adjustments for robot-specific constraints.
In contrast, our method explicitly incorporates preemptive
kinematic refinements to ensure motion executability and
physical feasibility, addressing these limitations comprehen-
sively.

III. PROPOSED METHOD

Our proposed method, Contact-aware motion Refinement
(CoRe), introduces a unified pipeline that generates physi-
cally plausible and diverse humanoid motions directly from
free-form text inputs. Unlike previous methods such as
Words into Action [4] and LAGOON [5], which primarily
focus on generative capabilities without addressing robot-
specific constraints, CoRe explicitly integrates a kinematic-
level optimization step to ensure physical feasibility of
generated motions. Furthermore, compared to dynamic-level
trajectory optimization approaches like OPT-mimic [16],
our method significantly reduces computational complexity
while preserving motion quality through targeted kinematic
refinements. TABLE I highlights the distinctive features of
CoRe relative to existing methods, emphasizing its unique
combination of text-based synthesis, trajectory refinement,
and computational efficiency.

TABLE I: Qualitative comparison across methods.
V' : supported, X : not supported, — : not applicable

Method Text Motion Trajectory Optimization
ctho Input Diversity Optimization Complexity

Proposed Method v v v Low

OPT-mimic [16] X X v High

Words into Action [4]

LAGOON [5] v v d -

A. Text-Conditioned Human Motion Generation

Our method starts by generating preliminary human mo-
tions from textual inputs using the Motion Diffusion Model
(MDM) [1]. MDM synthesizes realistic and contextually rel-
evant human motions based on semantic embeddings derived
from textual descriptions. This step provides diverse initial
motion sequences, which are subsequently refined to match
robot-specific kinematic constraints.
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Fig. 2: System overview. (A) Our pipeline begins with text-to-motion generation from natural language, followed by
robot-specific retargeting and Contact-aware motion Refinement (CoRe), which includes detecting stable contact segments,
optimizing trajectories under contact constraints, adjusting feet orientations, and handling collisions. (B) The refined motion
and extracted contact segments are utilized in physics-based imitation learning, where a reinforcement learning policy is
trained with contact-aware rewards. This enables robust sim-to-real deployment, ensuring reliable and safe execution of robot

motions corresponding to given text instructions.

Fig. 3: JOI information for SMPL and G1. JOI includes
key joints such as the head, shoulders, elbows, wrists, pelvis,
knees, and ankles.

B. Robot Motion Retargeting

In this step, we transform generated human motions into
executable robot motions using directional vectors. This
involves identifying key Joints of Interest (JOI) [9], [12]
specific to each robot’s kinematic structure. Typically, JOI
include major joints such as the head, shoulders, elbows,
wrists, pelvis, knees, and ankles (Fig. 3). Due to kinematic
differences between human and robot skeletons, direct joint
mapping is not feasible. Instead, we compute scaled di-
rectional vectors from the human motion to define target
positions for the robot’s JOI, accommodating differences in
limb lengths.

The target position of robot joint j is computed by:

robot __ _ robot + l{;)bOt . Vl_lpman

pj =P; ij

where /7% is the link length between robot joints i and j,
and VI jg the directional vector from joint i to j in the
human skeleton.

These target positions serve as input to a numerical In-
verse Kinematics (IK) solver. The IK formulation minimizes
discrepancies between target joint transformations and those
computed by Forward Kinematics (FK), subject to joint limit
constraints:

2

N
: robot robot  robot
min ZHTk —FK(§™™, q™")
q;.y k=1

robot

St Gmin < q1:y < Qmax

where g% denotes joint angles over time, ™ is the
robot’s kinematic model, and qmin, Qmax represent joint

limits.
C. Contact-Aware Motion Refinement (CoRe)

Our proposed method refines the retargeted robot motions
to ensure stable foot-ground interactions and overall physical
feasibility. As illustrated in Fig. 4, CoRe systematically
addresses critical issues such as unstable foot placements,
unnatural joint orientations, and potential collisions through
a structured kinematic optimization process. The refinement
procedure includes robust detection of foot-ground contact
segments, trajectory optimization constrained by these con-
tacts, adjustment of foot orientations to ensure realistic in-
teractions, and collision handling with trajectory smoothing.
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Fig. 4: Contact-Aware Motion Refinement (CoRe) 1) Contact Segment Detection: Identifying reliable foot-ground contacts
(¢r) by analyzing toe trajectories. 2) Contact-Constrained Trajectory Optimization: Refining trajectories to eliminate foot
sliding and floating, ensuring stable ground interactions and smooth base motion. 3) Feet Orientation Adjustment: Optimizing
foot yaw orientation to maintain natural and stable foot positioning during contacts. 4) Collision-handling and Smoothing:
Resolving self-collisions through targeted position adjustments and smoothing trajectories to prevent abrupt changes.

This comprehensive optimization transforms initially retar-
geted trajectories into physically executable and dynamically
consistent motions, significantly enhancing their suitability
for deployment on real humanoid robots.

1) Contact Segment Detection: This step robustly identi-
fies foot-ground contact segments, denoted as €, by analyz-
ing the vertical trajectories of the robot’s toe joints. We first
smooth the vertical (z-axis) trajectories to reduce measure-
ment noise. Subsequently, vertical velocities are computed,
and contact segments are detected when the absolute vertical
velocity remains below a predefined threshold. Short tran-
sient contacts are excluded by enforcing a minimum duration

for each segment. This detection is conducted independently
for each foot, establishing reliable ground contact intervals
essential for subsequent optimization stages and later utilized
in defining the contact reward within the reinforcement
learning framework.

2) Contact-Constrained Trajectory Optimization: This
optimization step ensures the physical plausibility and sta-
bility of the robot’s gait by refining the initial trajectories to
comply with contact constraints, thus preventing slipping and
unnatural movements. The optimization problem is defined
as follows:
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This formulation seeks the optimized positions p by mini-
mizing the weighted Euclidean distances between the initial
and refined trajectories of the robot’s base and feet. Here,
Whase and weeer represent weighting factors for prioritizing
trajectory fidelity.

Each constraint serves a clear purpose: Constraint (1a)
ensures that each foot remains above a minimal height zpi
preventing ground penetration. Constraint (1b) enforces zero
displacement for the feet during identified contact segments
., preventing foot slippage. Constraints (1c) and (1d) limit
accelerations of the base and feet, respectively, ensuring
smooth trajectories without abrupt movements. By solving
this optimization, we obtain physically consistent trajecto-
ries suitable for subsequent inverse kinematics calculations,
resulting in natural and executable robot motions.

3) Feet Orientation Adjustment: This optimization step
ensures stable and natural foot orientations during ground
contact segments, %y. The method prevents unnecessary
rotations and maintains consistent yaw orientations by for-
mulating an optimization problem:

L

min Y (157~ vl + 154 — vl )

YiN k=1

st. §l=ys, fe{lf}, Vke%; (2a)
o] < tmax,  f € {Tf,1f} (2b)

Here, 3{ denotes the optimized yaw trajectory of foot f,
and y represents the initial yaw orientation. Constraint (2a)
ensures the yaw orientation remains fixed during ground
contacts, while constraint (2b) limits yaw angular acceler-
ation, preventing abrupt orientation changes. Solving this
optimization yields a stable yaw trajectory that significantly
enhances the robot’s stability and movement realism.

4) Collision Handling and Trajectory Smoothing: This re-
finement step addresses potential self-collisions by adjusting
joint positions to ensure safe robot motion. Colliding body
parts are shifted according to contact force vectors to resolve
collisions effectively. Specifically, the target position of each
colliding body is updated using:

Ptarget = Pcontact +A- Veontact

where is a small scalar controlling displacement magnitude
along the direction of the contact force vector . After colli-
sion resolution, trajectories undergo smoothing by enforcing
acceleration limits, thereby preventing abrupt changes and
ensuring smoother, more stable robot motions.

D. Physics-Based Imitation Learning

To enable a humanoid to physically execute the refined
motion, we employ a physics-based motion imitation frame-
work based on reinforcement learning. The objective is
to learn motor skills that can closely reproduce a given
reference trajectory within a physically realistic simulation.
In the physics simulation, a humanoid agent is trained to
perform the motion by interacting with the environment and
receiving higher rewards when its behavior closely matches
the reference motions.

1) State and Action: At each timestep ¢, the policy
receives an observation o, = [q;,q;, a—1,8, 0, O] € R%,
which consists of information that can be reliably obtained
from onboard sensors and estimators during real-world de-
ployment. Specifically, the observation includes joint posi-
tions q; € R?, joint velocities ¢; € R?, the previous action
a; | € R?, the gravity vector projected into the base frame
g, € R?, the base angular velocity @ € R?, and a phase
variable ¢, € R? representing the progression of the reference
motion. Based on the observation, the policy outputs the
next action a; € R?°, which is the target position of the PD
controller for the robot at the current timestep.

TABLE II: Reward and penalty terms. Reward terms
including imitation objectives from reference motion and
additional penalties for stable sim-to-real transfer

Index Name Weight
Rewards (from reference motion)
0 joint position 1.95
1 joint velocity 0.30
2 root position 0.30
3 keypoint position 0.15
4 contact-aware 0.54

Penalty Terms (stability and regularization)

5 motor torques —2x1078
6 joint acceleration —3x1078
7 action rate —0.01
8 joint position limits —5.00
9 feet slide —-0.20

2) Reward: The overall reward is composed of three
components: imitation rewards, contact-aware rewards, and
penalty terms. The overall reward is computed as a weighted
sum of reward and penalty terms, with the corresponding
weights provided in the TABLE II.

The imitation rewards are defined based on the discrepancy
between the simulated motion and the reference motion,
including differences in joint positions and velocities, as
well as root position and orientation and keypoint position,
following the standard formulation used in prior physics-
based imitation learning methods.

Imitation Reward: First, joint position reward encourage
the simulated agent to match the reference joint angles and
global orientation of the root and the angles are represented
in radians. The joint positions are compared in joint space,



and the root orientation is represented as a 3D rotation vector.

2
r’ =exp l—Z( 5 —q! )
J

qr —4q;

where ! denotes the reward for joint position tracking, and
gr and g, represent the joint angles from the reference motion
and the simulated trajectory, respectively, at time .

Joint velocity reward penalizes discrepancies between the
simulated and reference joint angular velocities.

2
r{ =exp [—0.0l( —q >1
J

where r} denotes the reward for joint velocity tracking, and
g; and ¢, represent the joint velocities from the reference
motion and the simulated trajectory, respectively.

Root position reward measures the difference in the global
position of the base (root) of the simulated agent and the base
position of the reference.

)

r}’ase =exp { 10 (

where r?3¢ denotes the reward for root position tracking, and
pP8¢ and pP*° represent the root position from the reference
motion and the simulated trajectory, respectively.

Keypoint position reward compares the 3D positions of
selected keypoints (e.g., wrists and ankles) between the
simulated and reference motions in world space, represented

in the local coordinate frame of the pelvis base.

el o{g1)

where k € {rf,1f,rw, 1w} denotes the set of keypoint bodies
(right foot, left foot, right wrist, left wrist), and = denotes
the reward for keypoint position tracking, and pr and py
represent the keypoint position from the reference motion
and the simulated trajectory, respectively.

Contact Reward: To further improve motion fidelity,
especially for dynamic behaviors like locomotion, we incor-
porate contact segments obtained during motion refinement
into the reward function. These contact-aware terms help
the agent achieve stable foot placement and ground contact
pattern, improving both learning stability and physical plau-

sibility.
g {1 if 1 € G

sbase _ _base
t

¢ = .
0 otherwise

i =[] > e]
comact Z]l [5{ _ ct}

where f € {rf,If} denotes the set of left and right feet, F
represents the ground reaction force acting on foot f. and ¢&
and ¢, indicate the reference contact segments and simulated
contact signals, respectively. The threshold € to determine
contact is set to 1
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(b) “Cross your arms over your chest confidently starting in neutral
pose.”
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(c) “Open arms for friendly hug.”

Fig. 5: Sanpshots of real-robot deployment

Penalty Term: To promote stable and realistic motion, we
introduce several penalty terms to the reward function. These
include L2 norm on motor torque and joint acceleration to
reduce energy usage and motion jitter, and an action rate
penalty to encourage smoother transitions between actions.
A joint limit penalty is applied when joint positions exceed
90% of their valid range, preventing unnatural configurations.
Additionally, a foot sliding penalty is imposed when feet are
in contact with the ground but exhibit sliding motion.

IV. EXPERIMENT
A. Experimental Setup

1) Data Preparation: We generated a total of 90 motions
based on text descriptions, with 30 motions for each of the
following three categories:

« Simple Stationary Motions: Basic motions without
base movement or self-collisions (e.g., “Wave your hand
to say hello”).

« Walking Motions: Motions involving ground contact
and base movement (e.g., “Walk forward at a steady
pace”).

« Complex Motions with Self-Collision: Dynamic mo-
tions with high potential for self-collisions (e.g., “Cross
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Fig. 6: Tracking performance of G1 during real-world locomotion. Actual joint positions (solid lines) closely follow the
reference trajectories (dashed lines), demonstrating accurate motion reproduction. The actual motion shows a slight phase
shift relative to the reference, but the whole-body trajectory accurately reproduces the reference motion throughout the

walking sequence.

your arms over your chest confidently starting in neutral
pose”).

2) Evaluation Metrics: We assess our method’s perfor-
mance using a success rate metric, comparing the final
learned motion with the reference motion. A motion is
considered successful if it meets two key criteria. First, the
robot must maintain stability throughout the motion without
falling. Second, the robot must execute at least 90% of the
motion duration without violating the stability criterion. The
success rate is calculated as the percentage of successful
motions within each category.

We chose these two criteria to highlight our approach’s key
advantages. Direct application of human motions to robots
often fails due to kinematic differences. Our stability crite-
rion shows our method’s effectiveness in adapting motions
for robot balance, while the completion criterion demon-
strates fidelity to the original intent. These metrics together
illustrate our method’s capability to transform potentially
unsuitable source motions into executable and stable robot
actions, addressing a core challenge in text-to-robot motion
generation.

B. Simulation Results

We compare our method with two baselines: Words into
Action [4] and LAGOON [5]. TABLE III presents the
success rate comparison across the three motion categories.
Each generated motion sequence has a duration of 6 seconds
and incorporates both locomotion and gestural components.

The results presented in TABLE III showcase our method’s
performance, particularly its strengths in complex motion

TABLE III: Success Rate Comparison (%) across Motion
Categories

Method Simple Stationary  Walking = Complex Motions
etho Motions Motions  with Self-Collision
Proposed Method 100.0 733 66.7
Words into Action [4] 100.0 233 6.7
LAGOON [5] 100.0 26.7 20.0

categories. For Simple Stationary Motions, all methods
achieve a perfect success rate of 100%, indicating that these
basic motions are well-handled by existing approaches as
well as our method.

The advantages of our approach become evident in more
challenging scenarios. In the Walking Motions category,
our method outperforms the baselines with a success rate
of 73.3%, compared to Words into Action (23.3%) and
LAGOON (26.7%). This improvement can be attributed to
our motion refinement step, which effectively handles the
physical constraints of ground contact and balance during
locomotion.

Our approach also shows notable gains in the Complex
Motions with Self-Collision category. In this challenging
scenario, our method achieves a success rate of 66.7%,
considerably higher than both Words into Action (6.7%) and
LAGOON (20.0%). Our refinement process effectively man-
ages self-collisions, allowing the robot to maintain balance
and complete the motion. In contrast, due to the physical
implausibility of reference motions, baseline methodologies
frequently result in robot instability or failure to execute



intended kinematic sequences.

C. Real Robot Deployment

To evaluate the practicality of our proposed method, we
conducted experiments with three humanoid robots: one
upper-body robot and two full-body robots. The experiments
demonstrate the successful deployment of text-generated
motions on humanoid robots with diverse embodiments.
Fig.5 presents snapshots of various robots executing motions
synthesized from natural language commands. First, the
full-body humanoid robot demonstrates stable lower-body
support during upper-body motions, such as “Raise your arm
to intercept an incoming strike, using a blocking motion”
(Fig.5(a)). Both feet remain grounded, enabling the robot to
perform expressive gestures while maintaining balance. Next,
the wheeled humanoid robot executed a whole-body motion
generated from the instruction “Cross your arms over your
chest confidently starting in neutral pose,” demonstrating the
system’s ability to produce balanced and coordinated whole-
body behaviors from free-form text input (Fig.5(b)). Finally,
the upper-body humanoid robot platform successfully per-
formed upper-body gestures in response to instructions such
as “Open arms for friendly hug” (Fig.5(c)).

Fig. 6 illustrates the motion tracking performance of GlI,
comparing the actual and desired joint positions. The ankle
joint trajectories closely follow the orientation adjustments
applied during the refinement process. Furthermore, contact-
guided reward plays a critical role in stabilizing the gait
pattern by ensuring that each foot makes contact with the
ground and lifts off at the appropriate phase, preventing
stumbling and maintaining stable foot-ground interaction.
The results underscore the robustness and stability of our
approach in real-world deployments.

V. CONCLUSION

In this paper, we introduced CoRe, a hybrid method
integrating contact-constrained kinematic optimization and
reinforcement learning-based fine-tuning, effectively en-
abling robots to perform physically plausible motions gen-
erated from natural language commands. Experimental re-
sults across diverse motion categories demonstrated signif-
icant improvements over baseline approaches, notably in
complex scenarios involving locomotion and self-collisions.
The practicality and versatility of our framework were
validated through successful deployments on multiple hu-
manoid robots, including full-body humanoids, upper-body
humanoids, and wheel-based platforms. Thus, this work
substantially contributes to bridging the gap between natural
language and executable robot motions, with potential appli-
cations in assistive robotics, entertainment, and collaborative
tasks.

Despite promising results, our method shows limitations in
highly dynamic situations, such as rapid directional changes
during locomotion or fast-paced actions like sprinting. Future
work will therefore focus on enhancing robustness and real-
time stability, particularly addressing challenges in dynamic
and agile motion execution.
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